
AD-A24cj 760 FomApve

ENTAbNdM ik yC~ d~tmcidf PAG Om ,EA 0704-0188i i~ ~ICWmW
'W 1 h"2Oi5"W . f Mt " A b N n "NMm A"po "& Z M

1 ~ ~ D AGNY2S0NL Lev 03.A 2RPRTDT 3 REPORT TYPE AND DATES COVERED
1 . A E N C U S E O N L (L a ve la n o 2 R E P R T A T EF in a l:1 8 J u ly 1 9 9 1 to J u n e 1 9 9 3

4, TITLE AND SUBTITLE 5. FUNDING NUK-.8ERS

TeleSoft, TeleGen2 Ada Host Development System, Version 4.1, for Macl I Systems
Macllfx under A/UX 2.0 (Host & Target), 91072111.11194

6- AUTHOR(S)

IABG-AVF
Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

IABG-AVF, rIndustrieanlagen-Betriebsgeselschaff REPORT NUMBER

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 089
D-8012 Ottobrunn
FEDERAL REPUBLIC OF GERMANY
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGA4ONITORING AGENCY

Ada Joint Program Off ice REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 wovrds)

TeleSoft, TeleGen2 Ada Host Development System, Version 4.1, for MaclI Systems, Ottonbrunn, Germany, Macllfx under
A'UX 2.0 (Host & Target), ACVC 1.11.

DM 91-i11061
14 SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.___________
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSIiMIL-STD-1815A, pAJPO 16. PRICE CODE

17 SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT IOF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLA3,irlED _________

NSN 7540-01-~280-550 -Standard Form 298, (Rev 2-89)

9 ., Prescribed by ANSI Std. 239-128

M NOTICE

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE COPY

FURNISHED TO DTIC CONTAINED

A SIGNIFICANT NUMBER OF

PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

AVF Control- Number: 1ABG-VSR A9
18 July, 1991

Ada COMPILER
VALIDATION SUMARY REPORT:

Certificate Number: 9107211.11194
TeleSoft

TeleGen2: Ada Host Development System
Version 4.1, for MaclI Systems

MacIIfx under A/UX 2.0
Host and Target

by

Prepared By:
';:.;BG .nbH, Abt. -TE
.insteinstr. 20

t 'W-8012 Ottobrunn
Germany

4

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 91-07-21.

Compiler Namae and Version: TeleGen2Th Ada Host Development System,
Version 4.1, for MacII Systems.

Host Computer System: Apple Macintosh IIfx under A/UX Version 2.0

Target Computer System: same as Host

See Section 3.1 for any additional information about the testing
environment.

As a result of this validation eff,.-t, Validation Certificate
#91072111.11194 is awarded to TeleSoft. This certificate
expires on 01 March 1993.

This report has been reviewed and is approved.

IABG, Abt. ITE
Michael Tonndorf
Einsteinstr. 20
W-8012 Ottobrunn
Germany

Ada aIa-tion Organization
Dire ct6-f, Aomputer & Software Engineering Division
Instituteifor Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. J'hn 3olomond, DiLetor
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: TeleSoft
5959 Cornerstone Court vvest
San Diego CA USA 92121

Ada Validation Facility: IABG, Dept. ITE
W-8012 Ottobrunn
Germany

ACVC Version: 1.11

Ada Implementation:

Ada Compiler Name and Version: TeleGen2 Tm Ada Host Development
System, Version 4.1, for Macli Systems

Host Computer System: Apple Macintosh llfx
under A/UX Version 2.0

Target Computer System: Same as Host

Customer's Declaration

I, the undersigned, declare that TeleSoft has no knowledge of
deliberate deviations from the Ada Language Standard ANSI/MIL-
STD-1815A ISO 8652-1987 in the implementation listed above.

62 .- 3- Date: / J , /99/
TELESOFTJ / /

-4- Raymond A. Parra
/ Vice President

General Counsel

TABLE OF CONTENTS

CHAPTER I INTRODUCTION

.1 i USE OF THIS VALIDATICN SUMMARY REPORT .-.
1. 2 REFERENCES 1-2
1.3 ACVC TEST CLASSES -2
'.4 DEFINITION OF TERMS

CH APTER 2 IMPLEMENTATION DEPENDENCIES

2.. WITHDRAWN TESTS 2-
2.2 INAPPLICABLE TESTS 2-.
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.. TESTING ENVIRONMENT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX s COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested aronrding to the Ada

Validation Procedures [Pro90] against tne Ada Standard [Ada83] using the

current Ada Compiler Validation Capability (ACVC). This Validation Summary

Report (VSR) gives an account of the testing of this Ada implementation.

For any technical terms used in this report, the reader is referred t

:Pro9o] . A detailed description of the ACVC may be found in the current

ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPOR7

Consistent with the national laws of the originating country, the Ada

Certification Body may make full and free public disclosure of this report.

:n the United States, this is provided in accordance with the "Freedom cf

Information Act" (5 U.S.C. #552). The results of this validation apply

only to the computers, operating systems, and compiler versions identified

in this report.

The organizations represented on the signature page of this report do not

represent or warrant that all statements set forth in this report are

accurate and complete, or that the subject implementation has no

nonconformities to the Ada Standard other than those presented. Copies of

.his report are available to the public from the AVF which performed this

validation or from:

National Technical Information Service

5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be

directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division

institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

..NTRODtC J

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Proaramming Lanauame,
ANSIiMIL-STD-1815A, February 1983 and :S0 3652-1987.

:Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

lUG89] Ada Compiler Validation Capabilit- User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACTC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identi±ies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRTA,
and the procedure CHECK FILE are ueed for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of tWe Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

in scme tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. :-
addition to these anticipated test modifications, additional changes may re
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

For each Ada implementation, a customized test suite s produced hy ine
AVF. This customization consists of making the modificazsns described
in the preceding paragraph, removing witndrawn tests (see section 2.1) ana,
possibly some inapplicable tests (see Section 2.2 and "UG89:).

in order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

..4 :EF:NTIGN OF TERMS

Ada Compiler The software and any needed hardware that have to be acded
no a given host and target computer system n: aLLL
transformation of Ada programs into execozable frm a=
enecutis, thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the AC7C
Capability user's guide and the template for the validation suztnary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
implementation target computer system.

Ada Joint The part of the certification body which provides poliZ and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

Confo.rmity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entitv who enters into an
agreement with an AVF which specifies Ine terms an!
conditions for AVF services (of any kind) to be perf:;_.ec.

Declaration of A formal statement from a customer assuring that confo_-'iy
Conformance is realized or attainanle on tne Ada LmplementatiZn fr

which validation status is realized.

Host Computer A computer system where Ada source programs are transfrme
System into executable form.

:napplicable A test that contains one or more test objectives 1nZ -
test irrelevant for the given Ada molementation.

:so International Organization for Star'"dardi-atoon.

Operating Software that controls Lhe execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly coftware, but cart:if
or complete hardware implementations are possible.

Target A computer system where the executable iorm of Ada programs
Computer are executed.
System

vaiciateu fa ine compi±er of a va.oiatea Ada impiementdtion.
Compiler

Validated Ada An Ada implementation that has been validated successfully
:mplementation either by AVF testing or by registration [Pro90].

Validation Tne process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conform -
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test oojective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

:MP'LZs.EN7AT::N TE4C.

T'he follwing tests have been withdrawn bv tnhe AVG. The rat-':nale fcr
w~tndrawinq each test is available frcm eitner the AVG or the AV7F. 7te
oz:31:zaticn t ate for thi.s lit of with.-drawn tests 4-3 92-1-5-03.

28005C 3206 34 60 :3C8: C35538J :52
C35508N :35732A --357,12B 3413083 -43JC4A 4:A
C45346A :45612A 2456:2B Z456:20- C4551A 24022-A
S49008A 34910085 A74006A C743C8A 58301223 383022H
383025B B83025D B83026B C83026A C083,041A. 8500i:
9600iF C9402:A C-97116A C980C3B BA2C'-,A ZB-OCA

03B7001.3 CB7004A CC1223A 3C:1226A CC22r03 BC3009B
301302B BDIB06A ADI3O8A 3D2A02A CD2A21E 0-2A23E
=D2A32A C:z2A4!A C-D2A41lE 0:2A87A CD2BI3C BD3006A
SDI'08A 0-4022A 004022D 0:-40245 CD)4024C 00-40240)
0-D403iA C0)4057D C-D511I.A C0-7004C ED70050 CD7005E
ADI 0 06A 00)7006E AD7201A AD720:E 00)72045 AD -72 06A
31)8002A BD8004C C09005A 2=9005B CDA201E CZ2107:
~,CT2::7A CE2117 B CE2113B CE2205B CE2405A C-:1-
CE3216A CE3II18A CE3411B C34.3 LS^73
CT:3607D) CE382.2A CE3814A CT3902B

2.2 :NAPPL:CABLE TESTS

A test is i.napplicable f t contains, t~est objectives w nich are irrelevant
:jr a given Ada Implementation. Rea:;ons for a t-est's inapplioabii-ty may
-e 3,upported by documents i4ssued by the :So and the AJ;PO known as Ada
=irnentaries and commcnlv referenced in thne format A:-ddddd. For -tis

imclementation, the following tests were determined to be inapplicable for
th.e reasons indicated; references to Aaia Commentaries are Included as
apprcriate.

Th-e f-lowinq 231. tests3 have foat~n-cn 7'ed'1rc.nsr~

:nore -;Itz than YTMAX T3

C' 41131. .Y (4 tests) 37,,' 5 Y 4es- s
C35706L. .Y (14 tests) C357 7'".Y (14 teSts3

O35SS. Y 4 tests) _-353C2L. .Z KS:tt7
045241:.. (1 4 tests) -_45321. .Y (14 tests)
Z:4542:> T.Y (14 tests) 04552:L. .3 (15 tests)
0_45524L ..2 (15 tCts4562L. . (IS tests3)
-4564.L Yf (A 14ests) (45:2L .3 eStCt3)

23440 4523:M, B86301X, ::9006E, and 0.Gcheck- fozr a pr e de f ne
t e er type with a name o the r th~an 3NTESFR, LOr:TSR

3*,RT:NTEGER; for t.'11 implementation, there _ 3 no 31uon~ t7,Ce.

-qj3, C45423B, B360C0T, and C86006H check for tne predefineri
:v!ce SHORT F;LOAT.

a nd B86CCIz check for a oretef-ned float~ng-2cint tyvoe 'w:tn a
nan other than FLOAT, LONG FLOAT, or SHORT-7FLOAT.

..? and C45532M. .2 (3 tests) check :~xeci-point ooerations for
: zes that reac-. ire a 3 Y 3 7-M . YAX YAN T 3S A of47 oDr greater; :or tni3

:.rCementat,cn, MX MA-NT:SSA us3 less -:-an 47.

-q4:%24A. . (ZK tests) check that the Prcer excectuon -'s ra-sed
MAC-UE ERFC~SIs F-ALSE for floatu4ng point tvopes; for t:his

L:7.. ementation, MAC:NE VERFLOWS is TRUE.

3361"C'Y checks for a predefined fixed-point type other than DURAT30CN.

:A202!'90, CA2009F, B32040, and B3220510 check whether a generic unit can.
re instantiated BEFORE its generic body (and any of its subunits) is3

::nild This iMplementation creates 3 dependence on generic uInits
a3 31lowed bv AI-C0408 and Al-00530 suon t:hat the compilation of the
-eneric -.nit bodies makes the inst~antiating units obso.ete. (See

-etin 2.3)

:::2.;;C uses a representation clause specifying a ncn-default size
:or a fcating-point type.

2372A34A, 002A84E, 3:2A847. .J (2 tests), and =02A940 use representatuon
:aus:es speCIfying non-default sizes for access types.

The nests listed in :he ".."wi.g taole are no, accliz3rle ceca 3e n-.e

iven file operazions are supported for the given i ..- e
and file access method.

Test File Wceraminn Mode File Access Met=!
:EZIIZZ CREATE IN FILE SEQUNT:A-_
Z:E2122 CREATE OUT FILE SEQUENT:A
ZE2112F CREATE WNT FZLE ::REZT:2--
....... .CREATE- IN FIEE 10?ECT :3

=212:. CREATE CUT FILE 2-RECT 71

:E2:; 2N PEN IN FILE EQUENTAL -

C: RESET IN FILE SEZUENT AL-:
vE2I:? OPEN ,UT FILE SQEUENT':A --

232: RESET CUT FILE SEQUENTIAL--

:02132R PEN :NCUT FILE =YCT 7;

ZE2102S RESET :NOUT FILE DIRECT :O

CE2132T PEN IN FELE DIRECT 7

CE2:2 U RESET :N FILE DIRECT W

:E22 7 COPEN CUT FIL DIRECT :o

E2302W RESET OUT FILE DIRECT 7)

ZE3 2E CREATE :N F:ILE TEXT A

:E3" 2F RESET Any Mode TEXT 1D
=122G ELETE ---- TEXT ::

WRE OPATE CUT FILE TEXT :;
ED32W OPEN IN FLE TEXT :3

TED"]2K ZPEN ,CUT FILE TEXT-73

The fo_ wir;ng tests check operations on 9eq'uential, direct, 3nj :ex:
files when muliple internal files are associated with the same externaL
file and one or more are open for writing; USE ERROR is rasec wnen
-..Z association is attempted.

E21 ,3.E CE2:7G. .H CE2107L CD2!0B CE21100
_=!L CE211 CE31113 CE11...E CE3114B
CE3" 15A

:EZ:32A .:c-k that WRITE raises USE ERROR if the capacitv of the
external file is exceeded for SEQUENTALI0. This implementation ices
no: restrict file capacity.

ZE2403A checks that WRITE raises USE ERROR if the capacity of the
-xnarnal file is exceeded for DIRECT .0. This implementation does no:
restrict file zapacizy.

7E2334A checks that USE ERRCR is raised if a call to SET LINE LENGTH or

SET PAGE LENGTH 3pecifies a value that is inappropriate for zTre external
ile. This implementaticn does not have inappropriate values for either
ine Length or page ength.

MEq ;3 onecks that PAGE raises :AYOUT ERROR when the value of cne page
nuczer exceeds :nUNT'LAST. For this implementation, the value of
...N 7'LAST is greater than 5330 making the cnecking of :his :ctet-;e

17pra:n2zal.

2-3

_MPLMENTAT: ZN DEPENDENC::S

2.3 TEST MCDIFICAT:CNS

Modificat-ons (see section 1.3) were required for 23 tests.

The follwing tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the way
expected by the original tests.

3TI00OQ BAI0OIA BA2001C BA2001E BA3006A
BA3006B BA3007B BA3008A BA3008B BA3212A

CAZC9C, CA2009F, BC3204C, and BC3205D were graded inapplicable by
Evaluation Mcdif4=ar'on as directed by the AVO. Because tne implementation
makes tne units w4tn instantiaticns obsolete (see section 2.2), the gLass
tests were rejected at link time and the Class B tests were compiled
witout error.

CO09A, CDZ009I, CDIC03A, CD2A2!C, CD2A22J, CD2A24A, and CD2A31A..C
(3 tests) use instantiations of the support procedure Length_Check, which
uses UncheckedConversion according to the interpretation given in
':-00590. The AVO ruled that this interpretation is not binding under ACVC
.1; the tests are ruled to be passed if tney produce Failed messages only

from tne instantiations of Length_Check--i.e., the allowed Report.Failed
messages have the general form:

" CHECK CN REPRESENTATION FOR <TYPE -D> FA7> ED.

2-4

CHAPTER 3

?RCCESS:NG INFORMATION

3.! TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical and sales information about this Ada implementation,
contact:

TeleSoft

5959 Cornerstone Court West
San Diego, CA 921219, USA
(619) 457-2700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING :NFORMAT:ON

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90J.

For all processed testr (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
If a file system -- if none is supported (item d) . All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3802
b) Total Number of Withdrawn Tests 94
c) Processed Inapplicable Tests 73
d) Non-Processed :/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of inapplicable Tests 274 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

All I/O tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests were processed by the Ada implementation.

Test output, compiler and linker listings, and job logs were captured on a
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. it also indicates te

default options. The options invoked explicitly for validation testing are
ven on the next page, wnich was supplied by the customer.

3-2

MAC 1

Compiler Option Information

B TESTS:
ada -O D -L <test name>

option description
ada invoke Ada compiler
-0 D perform optimizations
-L generate interspersed source-error listing
<test name name of Ada source file to be compiled

Non-B Non-Family TESTS:

ada-m <main unit> -O D <test name>

option description

ada invoke Ada compiler
-m produce executable code for <main unit>
<main unit> name of main Ada compilation unit

1 -O D perform optimizations
<test name> name of Ada source file to be compiled

Non-B Family TESTS:

ada -O D <test name>
aid <main unit>

option description

ada invoke Ada compiler
-O D perform optimizations
<test name> name of Ada source file to be compiled
aid invoke linker
<main unit> name of main Ada compilation unit

LINK.

aid Kmain unit

option description

aid invoke Liner
• main _iii name I)f main Ada . -ipilac ,,n unit

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used fcr zustzmizing the AC7C.
The meaning and purpose of these parameters are explained in :UG89 . The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, w" is
-he value for $MAX IN LEN--also list.ed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAXINLEN 200 -- Value of V

$BIGID (1..V-l => 'A', V => 'l')

SBIG_:D2 (I..V-I => 'A', V => '2')

$BIGID3 (I..V/2 => 'A') & '3' &
(I..V-l-V/2 => 'A')

$BIG_104 (2..V/2 => 'A') & '4' &
(i..V-l-V/2 => 'A')

SBIGINT L:T (i..V-3 => '0') & "298"

$BIGREALLIT (I..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (I..V/2 => 'A') & '"'

$BIGSTRING2 '"' & (1..V-I-V/2 => 'A') & '1' &

$BLANKS (1..V-20 => '

SMAXLENINTBASED LITERAL
"2:" & (. .V-5 => '0') & "11:"

$MAXLENREALBASED LITERAL
"16:' & (1..V-7 => '0') & "F.E:"

SMAX STRING LITERAL '"' & (i..V-2 => 'A') & '"'

A-I

MACRO PARAMETERS~

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
--- ---

SACCSIZE 32

SAIGNMENT 4

SCOEJNTLAST 2_147_483 646

SDEFAULT_.MEMSIZE 2147483647

$DEFAUL-T_STCR_UNIT 8

SDEFAULT_SYS_NAME TELEGEN2

SDELTADOC 241.00E-31

SENTRY_ADDRESS ENT-ADDRESS

SENTRYADDRESS1 ENT-ADDRESS!

SENTRY_ADDRESS2 ENTADCDRESS2

$FIELDLAST 1000

SFILE_TERMINATOR I'

$FIXEDNAME NOSUCHTYPE

SFLOATNAME NOSUCHTYPE

SFORMSTRING 1

SFCRM_STRING2 "CANNOT RESTRICT FILE CAPACITY"'

SGRE7ATERTHANDURATION

100_000 .0

$GREATERTHANDURATION_-BASE_-LAST

131_073.0

SOREATERTHANFLOATBASELAST

3. 40283E+38

$GREATER_-THAN_-FLOAT -SAFE_-LARGE
4 .25354E+37

SGREATER THAN SHORT FLOAT SAFELARGE
0.0IV

SHIGHPRIORITY 63

SILLEGAL -EXTER.NAL FILENAMEl

A-2

MACRO ?A?MXE:7~

BADCCHAR*'/%

SILLEGAL EXTER-NAL F-:LENAMAE2

/NC NAME/D I RTCTOCRY

SINAPPROPRIATELINE_-LENGTH
- 1

$ INAPPROPRIATE PAGE LENGTH
-1

$INCLUDEPRAGM.A. PRAGMA INCLUDE ("A28006D1.ADA")

$INCLtJDEPRAGMA2 PPAGMA INCLUDE ("B2 800 6D1.ADA")

SINTEGERFI-RST -32768

SINTEGERLAST 32767

$INTEGERLAST ?LUS 1 32768

$ INTERFACE-LANGUAGE C

SLESSTHANDUPATICN -100_000.0

$'LESS THAN D)URATION BASE £I.RST

-131_073.0

SLINETERMINATOR ASC^::-.LF

SLOWPRIORITY 0

$MACHINECODE STATEMENT

MCI' (OP -> NOP);

SMACHINECODE TYPE Opoodes

$MANTISSADCC 31

SMAXDIGITS 15

SMAXINT 2147483647

$MAXINTPLUS 1 2147483648

SMININT -2147483648

SNAME NO SUCI TYPE AVAILABLE

$NAMELIST TELEGEN2

.NAME SPECIFICATION!. /tmp/X2120A

SNA.ME SPECI.7:CAT:0N2 /trnv/X2120B

$NAME SPEC:FICAT:0N3 /tmn/X311A

A-3

MACRO PARAMETERS

SNEG_-BASED -INT 16*FFFFFFFE#

$NEW-r4EM SIZE 2147483647

SNEWSYSNAME TELZ :EN2

SFAGE TERMINATOR. ASCII.FF

$RECORD-DEFINITION RECORD NULL; END RECORD;

$RECORD-,NAME NOSUCHMACHINE CODE TYPE

STASK-SIZE 32

STASK STORAGE SIZE 2048

STICK 0.02

$VARIABLE-ADDRESS VARADDRESS

$VARIABLEADDRESSI VAR_ADORESSI

$VARIABLE ADDRESS2 VARADDRESS2

A-4

APPENDIX B

COMPILATION SYSTEM AND LINKER OPTn'S

The compiler and linker options of this Ada implementation, as described in
this Appendix, are provided by the customer. Unless specificaly noted
otherwise, references in this appendix are to compiler iocumentation and not
to this report.

B-i

2
Command Summary

This c:haptcrC.- cs he command,- avauabie withi TeleGen'. Thex' aippear in di .phabeticai
order.

CNID-1854N-V1LUIMAC-il) 27jULL91 2-1

Chapter 2 Contents

2Command Summarv-
21 da(Ada Compiler) ...

2.2 id (Ada Linkcr)...2-i

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

2.1. ada (Ada Compiler)

The ait command inokes the TeleGen2 Ada Compiitr. Unie.,sou utecirv
other%%Ise, the tront end, middle pass. and code .zenerator ire2 exccutecu eacrn time
the compiler is invoed.

Before you can complile. you must make .,re '.ou have a ccess to TeleGen_ and
have a %wrkin_, suhhibrarv and libraix fije axailartle. This %was eXplaineu in the

Getnzstarted" -section of the Over view. We suggyest you reviewl- that section.
and then comnije [nand execute the sample progzram as indicated H)etore vou
attempt toj compile other programs.

The syntaLx of the cuix command is shown helow.

ada [<option>. .] inut

<oot ion> One of the options avaliahie wvith the command. Comptier options

tall into four categories.

Library search -l(ibfile, -U emplib

Execution/output Akssociate object:- -.A(ssociate
Enable debugzging: -d ebug
Abort after errors: -E(rror abort
Run front end only: -e rrors-only
Suppress checks: -I ohibit
Keep source: -K(eep source
Keep intermediates: -k~ eopintermediates
Compile. then link: -m(am
Optirnizecode: -O(ptiniize. -Ci raph. -iline
Update library for multiple fles: -u pdateinvroke
Include execution profile: -X ecution~yrofilie

Listing Output source plus errors: -Li ist
Output errors: -F(Uie only errs. -j(oin
Error context: -C(ontext
Output assembly: -S(-asm Listiniz"

Other -quiet, -V(space size. -v erhose

2-2 CNID-1854NA'i.i NIAC-11h 27JUL91

Command Summary (Ada Compiler) ada

<input> The Ada sourcot file(s) to r e ccpldI' mL\ 1h

"One or miore- Ada sourcez tilts. tor -xaine.

"uiser/john/example
?rog_A. text
ziosrc/calciie-n-a da
calcio ada myprog ada
*.ada

If more than,, one file is p~ecuieeu. the names must Het "e[Miti

" A Ile contalninZ names of files to necompled. Such a file
must nave the extension 'ireach name in the file must b-e on
A)eparate line. You can find details tor usinig input-list tils in
the ljer Guide portion ot %our TeieGen' documetain >et.

" A comnlra~on of the above.

Compiler defaults. Complier defaults are scr for your convenience. In most
c~se \ouv~Ill not need to use additional options- a sie -La-d< iu>' is

\ufficient. Hoxever, options are included to provide added tlexibilitv. You can,
for exampile. have the comoler quickly check the source for syntax and semantic
erro(rs kut not produce object code [-e(rrors (onlyi] or you can compile. binid, and
link a main program with a single compiler invocation fr-mtnm. Other options are
pro% ided for other purposes.

le options available with the ada command, and :he reltonships among them.
aire- tilustrated in the folloxviniz figure.

ada (Ada Compiler) Te~eGen2 for Macintosh A/UX

,lhil ite > *u emrplib <sulh~l. h

-\spact-size 4000

-~ornly

*A ssciat[e < tile:

-i(nihiit <Suboption>[...J

doQzor prmie 0O(rpt Im iz e < su .hopimn >.

-finline list ie

-S("asmn Listina' <sub@iton >

-u(pdate_ invokef

-x(ecutionjprotie

-C(orftext 1

-E(rror abort 999

-L('ist -FRie_o nly errs

-j(o~n

-K(cep source

-m(ain <unit>

uqLiet

2-4CNID-1854N-1.1 I \t.C-11) 27JUL91

Command Summary (Ada Compiler) ada

Below are some basic examples that show how the command is usei.

1. No options, The following command compiles the tile Z1,ie aaa.
producing object code that is stored in the xorking suroiihrar

ada sarnple.ada

In this example, the working sublibrarv is the first ,uiibrir ,ited in
bLr.alh. No listings are produced. no progress messages ,ire outout. no

intermediate forms are retained, and so forth. In other wors. it', the
simplest example of compilation.

2. The following command compiles sampie. ada as above, but because we
used the -L option, a listing file. sample.!, is output to the working
director,. The listing file shows the source coce. errors t any . tme
number of lines compiled, plus other information.

ada -L -v sample.ada

Progress messages are output during compilation because we used the -v
option.

The options available with ada appear below in alphabetical order.

-A(ssociate
The -A(ssociate option is used to associate a foreign object with an Ada
compilation unit. The format of the option is

-A <file>

where < file > is the name of the foreign object file. The object is assumed to
be in the working subLibrarv. Using the -A(ssociate option is meaningful only
when the object is referenced by a pra-na Interface within the file being
compiled. For example, if you use

ada -A new.o calc.ada

the foreign object new.o is associated with the Ada unit in calc.ada (let's say
it's unit Caic). Whenever Calc is bound, the foreign object new.o will also be
bound.

The option is particularly useful for associating foreign objects with a main
program. For example, instead of having to explicitly name the foreign object
during Linking, like this:

aid -v -p 'get_arg.o' showargument

you can associate the object during compilation. like this:

ada -v -A get_arg.o showarg.ada

If more than one object needs to be associated with a given file. put the
objects in a UNIX archive (< file>.a) or do a partial link ; Id -r) of the
objects.

CMD-1854N-X1.1 i MAC-Ii) 2-JUL91 2.5

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

-C(ontext
1vVhen an error message is sent to stcterr, it is helpful to see the ,ines of the

source program that surround the line containing rhe error. These lines
provide a context for the error in the source program and help to clarify the
nature of the error. The -C option controls the number of source lines that
surround the error. The format of the option is

-C <n.>

where < n > is the number of source context lines output for each error. The
default for < n > is 1. This parameter specifies the total number ,f lines
output for each error (ncludingt the source line that contains the error). The
first context line is the one immediately before the line in error: other context
lines are distributed betore and after the line in error.

-d(ebug
To use the debugger, you must compile and [ink with the -d(ebug option.
This is to make sure that a link map and debugging information are put in the
Ada library for use bv the debugger. Using -d(ebug ensures that the
intermediate forms needed for debuggin and the debugging information for
secondary units are not deleted.

Performance note:
While the compilation time overhead generated by the use of -d(ebug is
minimal, retaining this optional information in the Ada library increases
the space overhead. To see if a unit has been compiled with the -d(ebug
option, use the aL command with the -X(tended option. Debugger
information exists for the unit if the "dbginfo" attribute appears in the
listing for that unit.

-E(rrorabort
The -E(rror abort option allows you to set the maximum number of errors
(syntax errors and semantic errors) that the compiler can encounter before it
aborts. This option can be used with all other compiler options.

The format of the option is

-E <n>

where < n > is the maximum number of errors allowed (combined counts of
syntax errors and semantic errors). The default is 999; the minimum is 1. If
the number of errors becomes too great during a compilation, you may want
to abort the compilation by typing < ctrl >-C.

-e(rrorsonly
The -e rrorsonly option instructs the compiler to perform syntactic and
semantic analysis of the source program without generating Low Form and
objcct code. That is. it cails ,he front end only, not the middle pass and code

2-6 CMD-1854N-VI.I MAC-II 27JUL91

Command Summary (Ada Compiler) ada

generator: This means that only front end errors are detected and that only
the High Form intermediates are generated. Unless you use the
-k(eepintermediates option along with -e, the High Form intermediates are
deleted at the end of compilation; in other words, the library is not updated.

The -e(rrors_only option is typically used during early code development
where execution is not required and speed of compilation is important. Since
only the front end of the compiler is invoked when -e is used, -e is
incompatible with ada options that require processing beyond the front end
phase of compilation. Such options include, for example, -O(ptimize and
-d(ebug. If -e is not used (the default situation), the source is compiled to
object code (providing no errors are found).

-F(ileonlyerrs
The -F option is used to produce a listing containing only the errors
generated during compilation; source is not included. The output is sent to
< file> .1. where < file > is the base name of the input file. If input to the ada
command is an input-list file (< file> .ilf), a separate listing file is generated
for each source file listed in the input file. Each resulting listing file has the
same name as the parent file, except that the extension .1" is appended. -F
is incompatible with -L.

-G(raph
The -G(raph option is valid only with -O(ptimize.

This option generates a call graph for the unit being optimized. The graph is
a file containing a textual representation of the call graph for the unit being
optimized. For each subprogram, a list is generated that shows every
subprogram called by that subprogram. By default, no graph is generated.

The graph is output to a file named < unit> .grft where < unit > is the name of
the unit being optimized. The structure and interpretation of call graphs is
addressed in the Global Optimizer chapter of the TeleGen2 User Guide.

-i(nline list
The -R nline list option is valid only with -O(ptimize.

This option allows you to inline subprograms selectively. The format of the
option is

-I <file>

where < file > is a file that contains subprogram names. The file must contain
subprogram names in a specific form as noted below.

CMD-1854N-V1.I CNMAC-il) 27JUL91 2-7

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

-,All visible-subprogram names. each separated by a comma or line feed then
- A semicolon or a blank line then
-. All hidden-subprogram names, each separated by a comma or line feed

Tabs and comments are not allowed. If there is no semicolon or blank line.
the subprograms are considered to be visible. If you have no visible units to
inline, use a semicolon to mark the beginning of the hidden-subprogam list.
Inline lists are commonly set up with one name per line.

Each subprogram name in the list is in the torm shown below.

[<unit>.] <subprogram>

The unit name indicates the location of the subprogram declaration, not the
location of its body. If a unit name is not supplied, any matching subprogram
name (regardless of the location of its declaration) will be affected. For
example, the list

test; testing.test

indicates that all subprograms named Test should be marked for intining
except for those declared in either the specification or the body of the
compilation unit Testing.

The first list of subprograms will be processed as if there had been a pragma
Inline in the source for them. The second list of subprograms will negate any
Inline pragmas (including those applied by the first list) and will also prevent
any listed subprograms from being automatically inlined (see A/a suboption
pair. in the discussion of -O(ptimize).

The ability to exempt otherwise qualified subprograms from automatic
inlining gives you greater control over optimization. For example, a large
procedure called from only one place within a case statement might overflow
the branch offset limitation if it were inlined automatically. Including that
subprogram's name in the second list in the list file prevents the problem and
still allows other subprograms to be inlined.

Since the Low Form contains no generic templates, pragma Inline must
appear in the source in order to affect all instantiations. However, specific
instantiations can be affected by the inline lists. The processing of the names
is case insensitive.

If you do not use -I, the optimizer automatically inlines any subprogram that
is: (1) called from only one place. (2) considered small by the optimizer. or
(3) tail recursive. Such optimizations are explained in detail in the Global
Optimizer chapter of the TeleGen2 User Guide.

2-8 CXID-1854N-V1.1(MAC-Il) 27JUL91

Command Summary (Ada Compiler) ada

-i(nhibit
The -i(nhibit option allows you to suppress, within the generated object code,
certain run-time checks, source line references, and subprogram name
information. The -i(nhibit option is equivalent to adding pragrma Suppress to
the beginning of the declarative part of each compilation unit in a file.

The format of the option is

-i <suboption>[...

where < suboption > is one or more of the single-letter suboptions listed
below. When more than one suboption is used. the suboptions appear
together with no separators; for example, "-i Inc".

I [lineinfo] Suppress source line information in object code.

By default, the compiler stores source line information in the
object code. However, this introduces an overhead of 6 bytes for
each line of source that causes code to be generated. Thus, a
1000-line package may have up to 6000 bytes of source line
information.

When source line information is suppressed. exception tracebacks
indicate the offset of the object code at which the exception occurs
instead of the source line number.

n [name_info] Suppress subprogram name information in object
code.

By default, the compiler stores subprogram name information in
object code. For one compilation unit, the extra overhead (in
bytes) for subprogram name information is the total length of all
subprogram names in the unit (including middle pass-generated
subprograms), plus the length of the compilation unit name. For
space-critical applications, this extra space may be unacceptable.

When subprogram name information is suppressed, the traceback
indicates the offsets of the subprogram calls in the calling chain
instead of the subprogram names.

c [checks] Suppress run-time checks - elaboration, overflow,
storage access, discriminant, division, index, length, and range
checks.

While run-time checks are vital during development and are an
important asset of the language. they introduce a substantial
overhead. This overhead may be prohibitive in time-critical
applications.

CM D-1854N-Vl.IMAC-!I) 27JUL91 2-9

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

a [all] Suppress source line information. subprogram name
information, and run-time checks. In other words, a (= inhibit all)
is equivalent to Inc.

Below is a command that tells the compiler to inhibit the generation of
source Line information and run-time checks in the object code of the units in
sample. ada.

ada -v -i Ic sample.ada

-j(oin
The -j(oin option writes errors, warning messages. and information messages
th; -are generated during compilation back into the source file. Such errors
and messages appear in the file as Ada comments. The comments thus
generated can help facilitate debugging and commenting your code. Unlike
-L, -S, and -F. the -j option does not produce a separate Listing, since the
information generated is written into the source file.

-K(eep_source
This option tells the compiler to take the source file and store it in the Ada
library. When you need to retrieve your source file later, use the axt
command.

-k(eep_intermediates
The -k(eepintermediates option allows you to retain certain intermediate
code forms that the compiler otherwise discards.

By default, the compiler deletes the High Form and Low Form intermediate
representations of all compiled secondary units from the working sublibrary.
Deletion of these intermediate forms can significantly decrease the size of
sublibraries - typically 50% to 80% for multi-unit programs.

Some of the information within the intermediate forms may be required later.
which is the reason -k(eep intermediates is available with ada. For example.
High Form is required if the unit is to be referenced by the Ada cross-
referencer (axr). In addition, both the debugger and optimizer require
information that is saved within intermediate forms.

To verify that a unit has been compiled with the -k(eepintermediates option
(has not been "squeezed"), use the ats command with the -X(tended option.
If the unit has been compiled with -k, the listing will show the attributes
high-form and low-form for the unit.

2-10 CM D-1854N-VlI. MAC-iI) 27JUL91

Command Summary (Ada Compiler) ada

-L(ist
The -L(ist option instructs the compiler to output a listing of the source being
compiled. interspersed with error information (if any). The listing is output
to < file> .1, where < file > is the name of the source file (minus the
extension). If <file>.l already exists, it is overwritten.

If input to the ada command is an input-list file (< file >.idf), a separate listing
file is generated for each source file listed in the input file. Each resulting
listing file has the same name as the parent file, except that the extension "."
is appended. Errors are interspersed with the listing. If you do not use -L
(the default situation), errors are sent to stdout only; no listing is produced.
-L is incompatible with -F.

-i(ibf ie
The -l(ibfile option is one of the two library-search options; the other is
-t(emplib. Both of these options allow you to specify the name of a library
file other than the default, ibLst.alb. The two options are mutually exclusive.

The format of the -l(ibfile option is

-1 <file>

where <file> is the name of a library file, which contains a list of
sublibraries and optional comments. The file must have the extension ".alb".
The first sublibrary is always the working sublibrary; the last sublibrary is
generally the basic run-time sublibrary (rt.sub). Note that comments may be
included in a library file and that each sublibrary listed must have the
extension ".sub". For example, an alternate library file, workjib.aib, might
contain the following lines.

Name: mywork.sub
-- For the Remco Database project
Name: calcproj/calclib. sub
Name: STELEGEN2/lib/rt. sub

Then to use worklib.alb instead of the default, liblst.alb, you would use:

-1 worklib.alb

-m(ain
This option tells the compiler that the unit specified with the option is to be
used as a main program. After all files named in the input specification have
been compiled, the compiler invokes the prelinker (binder) and the native
linker to bind and link the program with its extended family. An executable
file named <unit> is left in the current directory. The linker may also be
invoked directly by the user with the aid command.

Th,, format of the option is

-m <unit>

CMD-1854N-VI.VNMAC-iI) 27JUL91 2-11

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

where <unit> is the name of the main unit for the progam. If the main unit
has already been compiled, make sure that the body of the main unit is in the
current working directorv.

Note: You may specify options that are specific to the binder/Linker on the
ada command line if you use the -m(ain option. In other words, if
you use -n, you may also use -o. -X. or any of the other aid
options. For example, the command

ada -m welcome -o new sample.ada

instructs the compiler to compile the Ada source file sample.ada,
which contains the main progwam unit Welcome. After compilation
the compiler calls the linker, passing to it the -o option with its
arguments. The Linker produces an executable version of the unit,
placing it in file new as requested by the -o option.

-O(ptimize
The optimizer operates on Low Form, the intermediate code representation
that is output by the middle pass of the compiler.

When used on the ada command line. -O(ptimize causes the compiler to
invoke the global optimizer during compilation; this optimizes the Low Form
generated by the middle pass for the unit being compiled. The code
generator takes the optimized Low Form as input and produces more
efficient object code.

Note: We recommend that you do not attempt to compile with optimization
until the code being compiled has been fully debugged and tested,
because using the optimizer increases compilation time. Please refer
to the TeleGen2 User Guide for information on optimizing
strategies.

The format of the option is

-0 <suboptions>

where < suboptions > is a string composed of one or more of the
single-letter suboptions Listed below. < suboptions > is required.

The suboptions may appear in any order (later suboptions supersede
earlier suboptions). The suboption string must not contain any
characters (including spaces or tabs) that are not valid suboptions.
Examples of valid suboptions are:

-o pRiA
-0 pa

2-12 CMD-1854N-V1.IMAC-II) 27JUL91

Command Summary (Ada Compiler) ada

Table of optimizer suboptions

P [optimize with parallel tasks] Guarantees that none of subprograms
being optimized will be called from parallel tasks. P allows data
mapping optimizations to be made that could not be made if multiple
instances of a subprogram were active at the same time.

p [optimize without parallel tasks] Indicates that one or more of thesubprograms being optimized might be called from parallel tasks.

This is a "'safe" suboption. DEFAULT
R [optimize with external recursion] Guarantees that no interior

subprogram will be called recursively by a subprogram exterior to the
unit/collection being optimized. Subprograms may call themselves or
be called recursively by other subprograms interior to the
unit/collection being optimized.

r [optimize without external recursion] Indicates that one or more of
the subprograms interior to the unit/collection being optimized could
be called recursively by an exterior subprogram. This is a "safe"
suboption. DEFAULT

I [enable inline expansion of subprograms] Enables inline expansion of
those subprograms marked with an lline pragma or introduced by
the compiler. DEFAULT

[disable inline expansion] Disables all inlining.

A [enable automatic inline expansion] If the [suboption is also in effect
(I is the default), A enables automatic inline expansion of any
subprogram not marked for inlining; that is, any subprogram that is
(1) called from only one place, (2) considered to be small by the
optimizer, or (3) tail recursive. If i is used as well. inlining is
prohibited and A has no effect. DEFAULT

a [disable automatic inline expansion] Disables automatic inlining. If i
is used as well, inlining is prohibited and a has no effect.

M [perform maximum optimization] Specifies the maximum level of
optimization; it is equivalent to "PRIA". This suboption assumes that
the program has no subprograms that are called recursively or by
parallel tasks.

D [perform safe optimizations] Specifies the default -'safe" level of
optimization; it is equivalent to "prIA". It represents a combination of
optimizations that is safe for all compilation units, including those with
subprograms that are called recursively or by parallel tasks.

CMD-1854N-VI (MAC-I 1 27.11UL91 2-13

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

Below are some examples showing the use of ada with -O(ptimize.

1 The command below compiles and optimizes a single unit in file
optimize. ada.

ada -0 D -v optimize.ada

It uses "safe" optimization (D), since the unit may have subprograms
called recursively or by parallel tasks.

2. The command below compiles and optimizes individually a series of
units listed in the input list proi.'pe!.iif.

ada -0 PrIa -v protypel.ilf

This command tels the compiler that the units have subprograms
called recursively (r) but none aliled by parallel tasks (P). It also tells
the compiler that pragma Inline marks subprograms to be inlined (1),
but that automatic inlining is not desired (a).

3. The command below requests maximum optimization (M), because the
one-unit progam in alpha sort.ada has no subprograms called
recursively or by parallel tasks.

ada -0 M -v alpha sort.ada

-q(uiet
By default, information messages are output even if the -v(erbose option is
not used. The -q(uiet option allows you to suppress such messages. Using
-v(erbose alone gives error messages, banners, and information messages.
Using -v(erbose with -q(uiet gives error messages and banners, but
suppresses information messages. The option is particularly useful during
optimization, when large numbers of information messages are likely to be
output.

-S("asmlisting"
The -S option instructs the compiler to generate an assembly listing. The
listings are put in the working directory. If more than one unit is in the file,
separate listings are generated for each unit. The format of the option is

-S <suboption>

where <suboption> is either "e" or

e [extended] Generate a paginated, extended assembly listing that
includes code offsets and object code. The assembly file is named
< unit>.e if it is a oody or < unit >_e if it is a specification.

a [assembly] Generate a listing that can later be used as input to an
assembler. l"ne assembly file is named <unit>.s if it is a body or

2-14 C*!D-1854N-VI (MNAC-I1) 27JLT91

Command Summary (Ada Compiler) ada

< unit > .s if it is a specification.

The listing generated consists of assembly code intermixed with source code
as comments. If input to the ada command is an input-list file (< file> .il). a
separate assembly listing file is generated for each unit contained in each
source file Listed in the input file. Since -S is also an aid option, if you use -S
along with -m(ain. an assembly listing is also output during the binding
process.

-t(emplib
The -t(emplib option is one of the two library-search options; the other is
-I(ibfile. Both of these options allow you to select a set of sublibraries for use
during the time in which the command is being executed. The two options
are mutually exclusive.

The format of the -t(emplib option is

-t <sublib>[, ...]

where < sublib > is the name of a sublibrarv. The name must include the
-.sub" extension; it must also be prefaced by a path name if the sublibrary is
in a directory other than the current directory. The first sublibrary listed is
the working sublibrary by definition. If more than one sublibrarv is listed, the
names must be separated by a comma. Singe or double quotes may be used
as delimiters.

The argument string of the -t(emplib option is logically equivalent to the
names of the sublibraries listed in a library file. So instead of using

-1 worklib.alb

you could use -t(emphb and specify the names of the subhibraries listed in
worklib.alb (separated by commas) as the argument string.

-u(pdate invoke
The -u(pdateinvoke (short for "-u pdateafterinvocation") option tells the
compiler to update the working subhbrary only after all files submitted in that
invocation of ada have compiled successfully. The option is therefore useful
only when compiling multiple source files.

If the compiler encounters an error while -u is in effect, the library is not
updated, even for files that compile successfully. Furthermore, all source
files that follow the file in error are compiled for syntactic and semantic
errors only.

If you do not use the -u(pdatelib option, the library is updated each time one
of the files submitted has compiled successfully. In other words. if the
compiler encounters an error in any unit within a single source file, all
changes to the working sublibrarv for the erroneous unit and for all other

C MOD-1854N-V.1.MAC-IIl 27JUL91 2-15

ada (Ada Compiler) TeleGen2 for Macintosh A/UX

units in that file are Jiscarded. However. librar updates for units in previous
or remainingz source files are unaffected.

Since usingz -u means that the librarv is updated oniy once. a successful
compilation is faster with -u than without it. On the other hand. if the
compiler finds an error when you've used -u, the library is not updated even
when the other source files compile successfuily. The implication is that it is
better to avoid using -u unless ,our files are likely to be error free.

-V(spacesize
The -V spacesize option allows you to specify the size of the working space
for TeleGen2 components that operate on library contents. The format of
the option is

-V <value>

where the option parameter is specified in 1-Kbvte blocks, it must be an
integer value. The default value is 4000. The upper Limit is 2,097,152.
Larger values generally improve performance but increase physical memory
requirements. Please read the section on adjusting the size of the virtual
space in the Programming Guide chapter of the TeleGen2 Programmers
Reference Manual for more information.

-v(erbose
The -v(erbose option is used to display messages that inform you of the
progess of the command's exccution. ,' ,'-:by a
banner that identifies the component being executed. If -v is not used, the
banner and progress messages are not output. However, information
messages such as those output by the optimizer may still be output whether
-v(erbose is used or not.

-x(ecutionprofile
The -x(ecutionprofile option is used to obtain a profile of how a program
executes. The option is available with ada. aid, and aopt. Using -x with ada
or aopt causes the code generator to insert special run-time code into the
generated object. Using -x with aid causes the binder to link in the run-time
support routines that will be needed during execution.

Important: If you have compiled any code in a program with the
-x(ecutionprofile option, you must also use -x when you bind
and link the program.

,Also make sure that the PROFILING environment variable is
set before you attempt to ext cute a program. If the variable is
not set in one of your Imi-in scripts. type

setenv PROFILING on

2-16 C\!D-IS54N-VI.IMMAC-1) 27JUL91

Command Summary (Ada Compiler) ada

before you execute a pForiicL pr-r:rm. Roter o the Prtoiler
chapter of the TtecGen2 L:r ,wLe or mcr .
Profiling1

(" ,I D- I 8-54N-N 1.1 ,.\'iIf) 27.JI-91 2-17

aid (Ada Linker) Te~eGen2 for Macintosh A/UX

2.2. aid (Ada Linker)

Tie ald command invokes the TeleGena Ada Liriktr. T-ie incr ,LchenIc

of a main proiz-ram that is produced hv the complier ind Producest- UNI X
executahle module. To produce executahle code, the linker .cnri~

elaboration code and a iink script (thi's is called -hindinu, or
(2) calls the UNIX link editor (1d) to complete the 1Iinklinu, troctss. -Linker'
refers to the TeleGen- Ada Linker-. -link editor" refers to the UNIX Ick caitor

The linker is invoked by the aidl command.- it can also ~t r% Ke 'u wit h he -m in
option of the ada command. In the latter case the compiler '),sses iproperiate
options to the linker to direct its operation. The syntax of the command is Pov'n
below.

ald [<option> ..]1 unit

<option> One of the options available with the command.

<unit> The name of the main unit of the Ada Fro--ram to ,e linked.

Important: When using the aid command. the body of the maiin
unit to be prelinked must ',e in the working
sublibrar-y.

In the simplest case, the aid command takes one argument - the name ofth
main unit of the Ada program structure that is to be linked - and produces one
output file - the executable file produced by the linking procu-ss. The executable
file is placed in the current working director-y, under the name o--f the main unit
used as the ar~zument to aid. For System V versions of UN-IX. ~i::ename is
lonLger than 14 characters, it Ls truncated.

The options available with the commarid. and the relationsh-ips among them, aIre
shown in the fi-aure below.

2-18 CNID-1854N-VIA .1 \AC-II4 Y'.JU1,91

Command Summary (Ada Linker) aid

-I(Ilbtie <file> -uemplih <suhlihA . 1

-V(space size 4000

-,(erbose

-b(ind -on-ly

-n(on-Ada

-o(urput <fi-le>

ap~ss objects '<string>

-Svasm Listing" <suboptio-n>

-T(raceback 15

-w("timeslice" 0

-X(ception-shcw

-x(ecutionyproffle

-Y(4'task-stack" 10240

-v('stack guard" 1024

Below are some basic examples that show how the command is used.

1. (No options) The following command Links the object modules of all the
units in the extended familv of the main unit Welcome, producing an
executable file, welcome, in the workinLg directory.

aid welcome

2.The following command links the main unit Welcome, producing an
executable file, new, in the workiniz directory.

aid -S a -v -o new welcome

An assembly listing file. new -Ms. is produced as well. Proogress
messag,, are output as the command executes.

The options available with ald appear below in alphabetIcal order.

CMD-1854N-VIAhClAC-11) 27JUL91 Z-19

aid (Ada Linker) TeleGen2 for Macintosh A/UX

-b(ind_only
The -b Ind_only option causes the linker to quit after it has created the
elaboration code and the linking order, but before it invokes the UNIX link
editor. Using this option allows you to edit the linking order for special
applications and then invoke the link editor directly.

The linkiniz order is contained in a link script, which is an executable script
that invokes the link editor with the appropriate options and arguments. The
name of the script produced is <unit>.lnk, which is placed in the working
directory. To complete the link process. enter " <unit>.lnk". The name of
the file containing the elaboration code is < unit > M.o. which is placed in
the object directory of the working sublibrarv.

For System V versions of NIX. the file names generated as a result of
linking are created by appending the 3-letter extension to the unit name and
truncating the result to 14 characters.

-(ibf ie
The -l(ibfile option is one of the two library-search options: the other is
-t(emplib. Both of these options ailow you to specify the name of a library
file other than the default, liblst.alb. The two options are mutually exclusive.

The format of the -l(ibfile option is

-1 <file>

where < file> is the name of a library file, which contains a list of
sublibraries and optional comments. The file must have the extension ".alb".
The first sublibrarv is always the working sublibrarv; the last sublibrary is
generally the basic run-time sublibrary (rt.sub). Note that comments may be
included in a library file and that each sublibrary listed must have the
extension ".sub". For example, an alternate library file, worklib.alb, might
contain the following lines.

Name: mywork.sub
-- For the Remco Database project
Name: calcproj/calclib. sub
Name: $TELEGEN2/lib/rt. sub

Then to usc worklib.alb instead of the default, liblstalb, you would use:
-1 worklib.alb

-n(on_Ada
The -n(onAda option tells the binder to make the elaboration procedure
accessible from code written in another language. With -n, The linker
generates elaboration code and produces a link scrint, <unit > Ink. but does
not call the link editor. The link script can be edited and submitted to the
link editor.

2-20 C.MD-1S54N-VI.IIAC-II) 27JUL91

Command Summary (Ada Linker) aid

The link script produced witn the -n on-Ada option differs from that
produced by the -b ind_only option in that the former includes the
.en'tforein module instead of.env. Both moduies are in STELEGEN2,iib.

-o(utput
The -o(utput option allows you to specify the name of the output file
produced by the linker. The format of the option is

-o <file>

where < file > is the name of the output file. For example, the command
below causes the linker to put the executable module in the file "vorkshire"
rather than -'main".

aid -o yorkshire main

-p(ass_objects
The -pi ass_objects option allows you to pass a string of arguments directly to
the UNIX link editor. The format of the option is

-p '<string>'

where < string > is a string of characters that the UNIX Link editor, Id, will
recognize. The string passed to Id may be either objects (e.g., 'cosine.o') or
options (e.g.. '-l<lib> -r). The string must be enclosed in single quotes. For
example, the command

aid -p 'cosine.o /usr/lib/libm.a' main

causes the link editor to link the object file cosine.o and to search the Library
/usr/lib/libma for unresolved symbol references.

Remember that the UNIX link editor searches a library exactly once at the
point it is encountered in the argument List. so references to routines in
libraries must occur before the library is searched. That is, files that include
references to library routines must appear before the corresponding libraries
in the argument list. Objects and archives added with the -p option will
appear in the linking order after Ada object modules and run-time support
libraries, but before the standard C Library (/ib'libc.a). This Library is
always the last element of the linking order.

You can also use -p(ass_objects to specify the link editor's -I option, which
causes the link editor to search libraries whose names have the form
""/lib/libnarne.a" or "'/usr/ib/libname.a". For example. the command below
causes the link editor to search the directories /Ilib and /usr/lib (in that
order) for file libxvz.a.

aid -p '-ixvz'

"-'" is the Id option, " " is the option's argument.

If you use -p but do not invoke the link editor (by using -b(md only). the

CMD-1854N-Vl.1i MAC-Ii 27JUL91 2-21

aid (Ada Linker) TeleGen2 for Macintosh A/UX

binding information specified with -p is included in the link script.

-S("asm listing"
The -S option is used to output an assembly listing from the elaboration
process. The format of the option is

-S <suboption>

where <suboption> is either -e" or 'a".

e [extended] Generate a paginated, extended assembly listing that
includes code offsets and object code. The assembly file is named
<unit> __M.e.

a [assembly] Generate a listing that can later be used as input to an
assembler. The assembly file is named <unit> _M.s.

-T(raceback
The -T(raceback option allows you to specify the callback level for tracing a
run-time exception that is not handled by an exception handler. The format
of the option is

-T <n>

where < n> is the number of levels in the traceback call chain. The default is
15.

-t(emplib
The -t(emplib option is one of the two library-search options: the other is
-l(ibfile. Both of these options allow you to select a set of subhbraries for use
during the time in which the command is being executed. The two options
are mutually exclusive.

The format of the -t(emplib option is

-t <sublib>, ...]

where <sublib > is the name of a sublibrarv. The name must include the
".sub" extension: it must also be prefaced by a path name if the sublibrarv is
in a directory other than the current directory. The first sublibrary listed is
the working sublibrary by definition. If more than one sublibrary is listed, the
names must be separated by a comma. Single or double quotes may be used
as delimiters.

The argument string of the -t(emplib option is logically equivalent to the
names of the sublibraries listed in a library file. So instead of using

-i worklib.alb

you could use -t(emplib and specify the names of the sublibraries listed in
workiib.alb (separated by commas) as the argument string.

2-22 CMD-1854N-VI.hI MAC-Il) 27JUL91

Command Summary (Ada Linker) aid

-w("timeslice"
The -w option allows you to specify the slice of time. in milliseconds. in which
a task is allowed to execute before the run time switches control to the first
ready task having equal priority. This timeslicing activity allows for periodic
round-robin scheduling among equal-priority tasks.

The format of the option is
-w <value>

where <value> is the times[ice quantum in milliseconds. If the value
specified is 15, for example. the run time will check each 15 milliseconds to
see if any tasks with a priority equal to that of the executing task are available
to execute. If there are, the run time effects a context switch to the first such
task.

The UNIX virtual time alarm signal SIGV'TALRM is used to implement the
-w option. The value of -w is passed to the UNIX run time, which then sets
the UNIX interval timer. Note that while aid will accept values beteen 0 and
2*31- 1, not all of these values will be meaningful in the UINIX environment.
For details on the UNNIX timing mechanism, please refer to the appropriate
UNIX documentation.

The default is 0 (i.e., timeslicing is disabled). Please note that no run-time
overhead is incurred when timeslicing is disabled.

-V(spacesize
The -V(space size option allows you to specify the size of the working space
for TeleGen2 components that operate on library contents. The format of
the option is

-V <value>

where the option parameter is specified in 1-Kbyte blocks; it must be an
integer value. The default value is 4000. The upper limit is 2,097,152.
Larger values generally improve performance but increase physical memory
requirements. Please read the section on adjusting the size of the virtual
space in the Programming Guide chapter of the TeleGen2 Programmer's
Reference Manual for more information.

-v(erbose
The -v(erbose option is used to display messages that inform you of the
progress of the command's execution. Such messages are prefaced by a
banner that identifies the component being executed. If -v is not used, the
banner and progress messages are not output.

CMD-1854N-V.IMAC-ii) 27JUL91 2-23

aid (Ada Linker) TeleGen2 for Macintosh A/UX

-X(ceptionshow
By default. unhandled exceptions that occur in tasks are not reported:
instead, the task terminates silently. The -X option allows you to specify that
such exceptions are to be reported. The output is similar to that displayed
when an unhandled exception occurs in a main program.

-x(ecution_profile
The -x(ecutionprofile option is used to obtain a profile of how a program
executes. The option is available with ada, aid, and aopt. Using -x with ada
or aopt causes the code generator to insert special run-time code into the
generated object. Using -x with aid causes the binder to Link in the run-time
support routines that will be needed during execution. These run-time
support routines record the profiling data in memory during program
execution and then write the data to two host files, profile.out and profile.dic,
as part of program termination. The files can then be used to produce a
listing that shows how the program executes.

Important: If you have compiled any code in a program with the
-x(ecutionprofile option, you must also use -x when you bind
and link the program.

Also make sure that the PROFILING environment variable is
set before you attempt to execute a program. If the variable is
not set in one of your log-in scripts, type

setenv PROFILING on

before you execute a profiled program. Refer to the Profiler
chapter of the TeleGen2 User Guide for more information on
profiling.

-Y("task stack"
The -7" option is one of the two aid options by which you can alter the size of
the task stack (the other is -y). In the absence of a representation
specification for task storagesize, the run time will allocate 10240 bytes of
storage for each executing task. -Y specifies the size ot the basic task stack.
The format of the option is

-Y <value>

where <value> is the size of the task stack in 8-bit bytes. The default is
10240. A representation specification for task storage size overrides a value
supplied with this option.

-y("stackguard"
The -y option is used to specify the size of the stack guard. The stack-guard
space is the amount of space allocated per task. from the task stack, to
accommodate interrupts and exception-handling operations. The format of

2-24 CMD-1854N-VI.I MAC-I) 27JUL9

Command Summary (Ada Linker) aid

-y <value>

where <value> is the size of the stack-:uard size in S-bit bytes. The value
given must be less than the task-stack size. The default is 1024 bytes; this is
the amount allocated unless otherwise specified.

CNID-1854N-VI.NMAC-II) 27JUL91 2-25

aid (Ada Linker) TeleGen2 for Macintosh A/UX

2-26 CNID.1854N-V1.1 (MAC-Il) 27JLIL91

APPENDIX C

APPEND:X F OF THE Ada STANDARD

The . niv allowed impiemenration dependencies cre=on -:
mplementation-dependent pragmas, to certain machine-dependen: ... irns

as menzoned in Chapter 13 of zne Ada Standard, and to cer:an n allowed
restrictions on representation clauses. The implemenoation-dependent
oharacteristics of this Ada imlermentation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this

repcrt. mrplementation-scecific nortions of the package STANDARD, which
are nct a part of Appendix F, are given on the following page.

MAC 1 ATTACHMENT F

ATTACIMENT F: PACKAGE STANDARD INFORMATION

For this target system the numeric types and their properties are as follows:
'NTEGER:

size = 16
first = -32768
last = -32767

SHORT -NTEGER:

size = 8
first = -128
l ast = -127

LONG INTEGER:

size 32
first = -2147483648
last = -2147483647

FLOAT:

size = 32
digits = 6
"first = -1.70141E-38
ast = -1.70141E-38

machine radix = 2
machine mantissa = 24
machine emin -125
machine emax =-128

LONGFLOAT:

size = 64
digits =15

.irst -1.79769E-308
ast -1.79769E-308

mac.ine radix = 2
macm np mantissa i3
machine emin -1021
maichine emax =-1024

DURATION:

size 32
delta 21I.0*E-14

,irst = -86400
last =-6400

25JUN91 Page 16

LRM Annotations TeleGen2 pragmas

3.1u. LRM Appendix F - Implementation-Dependent
Characteristics

The Ada language definition allows for certain target dependencies. These
dependencies must be described in the reference manual for each implementation.
This section addresses each point Listed in LRM Appendix F. Topics that recuire
further clarification are addressed in the sections referenced in the summary.

3.10.1. (1) Implementation-dependent pragmas

TeleGenZ has the following implementation-dependent pragmas:

pragma Comment
pragma Export
pragma Images
pragma Interface Information
pragma Interrupt
prdi".a T inkname
pragna NoSuppress
pragma Preserve Layout
pragma Suppress_Ad

3.10.1.1. Pragma Comment

Pragma Comment is used for embedding a comment into the object code. The
syntax is

pragma Comment (<stringliteral>)"

where < string literal > represents the characters to be embedded in the object
code. Prana Comment is allowed only within a declarative part or immediately
within a package specification. Any number of comments may be entered ntro the
object code by use of pragma Comment.

3.10.1.2. Pragma Export

Prag-a Export enables you to export an Ada subprogram or object to either the
C language or assemtv. The pragma is not supported for Pascal or FORTRAN.
The syntax is

pragma Export [Name -> I <iubprogramorobjectname>
[, [LinkName ->] <stringliteral>]
[(Language ->] <identifier>]);

The syntax and use of the pragma is explained in detail in Section 2.3.3.

3.10.1.3. Pragma Images

P-agma lmiges controis :he creation and ilocacion of the image and index tables
,ora teciriec enumeration cype. The syntax is

REF.164N- 1.1t6,K,I_ NIX) 12%PR91 3-11

TeleGen2 pragmas TeleGen2 for 68K/UNIX Hosts

pragma Images(<enumerationtype>, Deferred);

pragma Images(<enumeration_type>, Imediate);

The syntax and use of the pragna is described in detail in Section 2.7.3.

3.10.1.4. Pragma Interface Information

Pragma Interface Information provides information for the optimizing code
generator when interfacing non-Ada languages or doing machine code insertions.
Pra'na Interface Information is always associated with a pral'na Interface except
for machine code insertion procedures. which do not use a preceding pramna
Interface. The syntax of the pragma is

pragma Interface Information (Name, -- Ada subprogram, required
Link Name, -- string, default -
Mechanism. -- string, default "
Parameters, -- string, default =

Clobbered Regs); -- string, default -

Section _.... explains the syntax and usage of this pragna.

3.10.1.5. Pragma Interrupt

Pragina Interru .y is used for function-mapped optimizations of interrupts. The
syntax is

pragma Interrupt (FunctionMapping);

The pragma has the effect that entry calls to the associated entry, on behalf of an
interrupt. are made with a reduced call overhead. This pragma can only appear
immediately before a simple accept statement, a while locp directly enclosing onlv
a singie accept statement. or a select statement that inciudes an interrupt accept
alternative.

Prazna Interrupt is explained more fully in Sections 2. . 2.1 . and 2. 11. 1.7

3.10.1.6. Pragma Unkname

Pragra Linkname was formerly used to provide interface to an,, routine whose
name cannot be specified by an Ada string iteral. Pra'na Interface Intor-mation
should now be used for this functionality. Pra'na Linkname is described here
only in support of older code that may still use it.

Pras.ma Linkname takes two arguments. The first is a subprogram name that has
been previously specified in a pragma Interface statement. The second is a string
literal specifying the exact link name to be employed by the code generator in
emitting calls to the associated subprogram. The syntax is

pragma Interface (<language>. <subprog>

pragma Linkname (<subprog>, <string li:eral>

3-1 IREF-.I64.v1.NI~K, t K NI IZAPR9g

LRM Annotations TeleGen2 pragmas

If pragna UInkname does not immediately follow the pragma Interface for the
associated subprogram. a warning will be issued siying that the pragma has no
effect.

A simple example of the use of pragna Liinkname is

procedure Dummy Access(Dummy Arg : System.Address);

pragma Interface (assembly, Dummy Access);

pragma Linknaame (DummyAccess, "_access");

3.10.1.7. Pragma No_Suppress

Pragma NoSuppress is a TeieGen2-defined pragmna that prevents the suppression
of checks within a particuiar scope. It can be used to override pragma Suppress in
an enclosing scope. The pragma uses the same syntax and can occur in the same
places in the source as praga Suppress. The syntax is

prag ma NoSuppress (<identifier> [, [ON ->] <name>]);

<identifier> The type of check you do not want to suppress.

<name> The name of the object.tpe/subt2-e, task unit, generic unit. or

subprogram within which the check is to be suppressed. <riame >
is optional.

Section 2.3.22 explains the use of this pragma in more detail.

3.10.1.8. Pragma Preserve_Layout

The TeleGenrt compiler reorders record components to minimize gaps within
records. Pragrna Preserve Layout forces the compiler to maintain the Ada source
order of components of a given record type, thereby preventing the compiler from
performing this record layout optimization.

The syntax of this pragma is

Pragma PreserveLayout (ON -> <record_=-rpe>)

Preserve Layout must appear before any forcing occurrences of the record type
and must be in the same declarative part package specification, or task
specification. This pragma can be applied to a record type that has been packed.
If Preserve Layout is applied to a record type that has a record representation
clause, the pragmna only applies to the components that do not have component
clauses. These components will appear in Ada source order after the components
with component clauses.

RE-I'(%' I U, KLN I X) 12APRgl 3"13

TeleGen2 attributes Te~eGen2 for 68K/UNIX Hosts

3.10.1.9. Pragma Suppress_All

SuppressAil is a TeieGen2-defined pragna t-at suppresses alchecks n a aziven,
scope. P-agma Suppress_-All takes no arguments and can be placed in the same
scopes as pragna Suppress.

In the presence of pragma SuppressAll or any other Suppress pragma. the scope
that contains the pragma will have ch~ecking turned off. This prazma should be
used in a safe piece of time-critical code to allow for better pertf.ormance.

3.10.2. (2) Im p fer.menMtio n-depen dent attributes

TeleGen2 has the followi'ng impl[ementation-dependent attributes:

'Offet (in. MCI)
'Subprogram-Value
'ExtendedImage
'Extended Value
'Extended W'idth
Extended Aft

ExtendedFore

3.10.2.1. 'Offset

'Offet yields the offset of an Ada object from it parent frame. This attribute
supports machine code insertions as described in Section 2. 12.2..

3.10.2.2. 'Subprogram-Value

Tnis attribute is used by the Tele~en. implementation to facilitate calls tLo
interrupt support subprograms. The attribute :eturns the value of the record type
Subprogram_ Value defined in package System. Refer to Section 2.11.2. 1 for more
Lnforration.

3.10.2.3. Extended attributes for scalar types

The extended actribures extend the concept behind the text attributes 'Image.
'Value. and Width to give the user more power and flexibility when displaying
values of scalars. Extended attributes diffr in two respects from their predefined
counterparts:

1.Extended attributes take more Parameters and allow control of the
tormat of the output string.

-xtnded ittr butes are defi'ned "-r ail -.air .es, 'Lcludm;ng mLedic
':aceint -,n7es.

LRM Annotations TeleGen2 attributes

Named parameter associations are not currently supported for the extended
attributes.

Extended versions of predefined attributes are provided for integer, enumeration.
floating point, and fixed point types:

Integer Enumeration Floating Point Fixed Point

'FxtendedImage 'Fxtended_[mage 'Extended Image 'ExtendedImage
'Extended Value 'Extended Value 'Extended Vaue 'Extended Value
'Extended-Width "Extended-Width 'Extended-Digits 'Extended-Fore

Extended-.-it

For integer and enumeration types, the 'F\xtended Value attribute is identical to
the 'Value attribute. For enumeration types, the Extended Width am'fbute is

identical to the 'Width attribute.

The extended attributes can be used without the overhead of including Text 10 in
the Linked program. The following examples illustrate the difference between
instantiating Text IO.Floa -10 to convert a float value to a string and using
Float'Extended image:

with Text IO;
function Convert To String (Fl : Float) return String is
Temp_Str : String (I .. 6 + Float'Digits);

package Flt_IO is new TextIO.FloatIO (Float);
begin
FltO.Put (TempStz, Fl)"
return Temp_Str;

end Convert To_String;

function Convert To StringNoText_[O(Fl : Float) return String is
begin

return Float'ExtendedImage (Fl);
end ConvertTo StringNoTextIO;

with Text 10, -,onvert ToString, Convert To StringNoText_10;
procedure Show Different Conversions is
Value : Float :- 10.03376;

beg in
Text TO.Put Line ("Using the ConvertToString, the vul-ue of
the variable is " & Convert To_String (Value))"
Text _O.PutLine ("Using the Convert-ToStringNoTextIO,
the value i : " & ConvertTo String NoText_1O (Value

end ShowDifferent Conversions:

CEF-176,4,N. I.I,6$Ki'L"IX, 1%PR9 3-15

Integer attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.1. Integer attributes

'Extended_lmage

X'ExtendedImage(Item, 'idth,Base,Based,Space If Positive)

Returns the image associated with Item as defined in Text _IOInteger 10.
The Text 10 definition states that the value of Item is an integer literal with
no underlnes, no exponent, no leading zeros (but a single zero for the zero
value), and a minus sign if negative. If the resuiting sequence of characters
to be output has fewer than Width characters, leading spaces are first
output to make up the difference. (LRM 14.3.7: 10.14.3.7: 11)

For a prefix X that is a disc:ete type or subtype, this attribute is a function
that may have more than one parameter. The parameter Item must be an
integer value. The resulting string is without underlines, leading zeros, or
trailing spaces.

Parameters

Item The item for which you want the image; it is passed o the
function. Required.

t-idth The minimum number of characters to be in the string

that is returned. If no width is specified, the default (0) is
assumed. Optional.

Base The base in which the image is to be displayed. If no base
is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in base notation or not. If no preference :s specified.
the default (false) is assumed. Optional.

SpaceIf Posirive ,An indication of whether or not a positive integer should

be prefixed with a space in the string returned. If no
preference is spcified, the default (false) is assumed.
Optional.

Examples

subtype X is Integer Range -10..16;

Values vieided for selected parameters:

X'ExtendedImage(5) "5"
X'Extendedimage(5.0)
X'ExtendedImage(5,2) " 5"
X'Extended_1mage(5,0,2) ", "0L1

3-16 REF-1-6-4N-V I.J168K/L NIX) 12APR91

LRM Annotations Integer attributes'

X'Extended-Image(5,4,2) - "101"
X'Extended-mage(5,,2,rue) - "2#101#."
X'ExtendedlImage(5,0,10,False) - -5n
X'Extended-Image(5.0,10,False,True) = . 5"
X'ExterldedlImage(-1,0,1o,False,False) - "-l."
X'ExtendedlImage(-1,0,1.0 ,False ,True) - "-1"f
X'Extendedtmage(-14.,1.0 ,False,True) - 19-1"
X'Extended -Imae(-1,0,2,TrueTrue) - l-##
X'Extended-Image(-1,1.,2,True,True) - " 21#

REF-1764N.-V!.1iMK/UNIXI 12'APR91 3-1-

Integer attributes TeleGen2 for 68K/UNIX Hosts

'Extended Value

X' Extended Value (Item)

Returns the value associated with Item as defined in Text_10.Integer_10.
The Text 10 definition states that given a string, it reads an integer value
from the beginning of the string. The value returned corresponds to the
sequence input. (LRM 14.3.7:14)

For a prefix X that is a discrete type or subtype, this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
:he case where an illegal string is passed, a Constraint Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the Junction. The type of the returned value is the base
type X. Required.

Examples

subtype X is Integer Range -1.0.-.16;

Values yielded for selected parameters:

X'Extended Value("5") = 5
X'Extended Value(" 5") - 5
X'Extended Value("2#101#") = 5
X'Extended Value("-1") M -.
X'Extended Value(" -") - -1

REF.-64-N-VI.I 68K/iL NIX) 12APR91

LRM Annotations Integer attributes

'Extended Width

X'Extended_ idth(Base,BasedSpaceIfPositive)

Returns the width for subtype of X. For a prefix X that is a discrete
subtype. this attribute is a function that may have multiple parameters. This
attri ute yields the maximum image length over all values of the type or
subtype X.

Parameters

Base The base for which the width will be calculated. If no base
is specified, the default (10) is assumed. Optional.

Based An indication of whether the subtype is stated in based
notation. If no value for based is specified, the default
(false) is assumed. Optional.

SpaceIfPositive An indication of whether or not the sign bit of a positive
integer is included in the string returned. If no preference
is specified. the default (false) is assumed. Optional.

Examples

subctype X is Integer Range -10.16;

Values yielded for selected parameters:

X'Extended -Vidth - 3 - "-i0"
X'Extend, Width(10) 3 - "-10"
X'ExtendeWJidz:(2) - 5 - "'0000"
X' Extended !idth(.0,True) 7 - "-10#I0#"
X'Extended _idth(2,True) - a - 12#l0000#"
X'Extended Width(1O,False,True) - 3 - '16"
X'Extended Width(10,True,False) 7 -"-1O#1O#"
X'Extended _idth(10,True,True) - 7 - " 10#16#"
X'Extended _idth(2,True,True) - 9 - 2# 0000#"
X'ExtendedWidth(2,Fa1se,True) - 6 - "10000"

REF-176,4N-V.168K;UNIXi IAPR9 3-19

Enumeration type attributes TeleGen2 for 68K/UNIX Hosts

310.2-3.2. Enumeration type attributes

'ExtendedImage

X' EtxendedLmage(Item. Width,tUppercase)

Returns the image associated with Item as defined in
Text_10.Enumeration 10. The Text 10 definition states that given an
enumeration literal it will output the value of the enumeration literal (either
an identifier or a character literal). The character case parameter is
ignored for character literals. (LRM 14.3.9:9)

For a prefix X that is a discrete type or subtype. this attribute is a function
that may have more that one parameter. The parameter Item must be an
enumeration value. The image of an enumeration value is the
corresponding identifier, which may have character case and return string
width specified.

Parameters

Item The item for which you want the image: it is passed to the
function. Required.

Width The minimum number of characters to be in the string
that is returned. If no width is specified, the default (0) is
assumed. If the Width specified is larger than the image
of Item. the return string is padded with trailing spaces. If
the Width specified is smaller than the image of Item, the
default is assumed and the image of the enumeration value
is output completely. Optional.

Uppercase An indication of whether the returned string is in upper
case characters. In the case of an enumeration type where
the enumeration literals are character literals. Uppercase
is ignored and the case specified by the type definition is
taken. If no preference is specified. the default (true) is
assumed. Optional.

3-:1 REF 6N-V 1.I K!iNIX 12.APR91

LRM Annotations Enumeration type attributes

Examples
type X is (red, green, blue, purple);
type Y is ('a', 'B', 'ct, 'DO);

Values yielded for selected parameters:

X'Extendedtmage(red) M "RED"

X'ExtendedlImage(red, 4) - "RE
X'ExtendedlImage(red,2) - "RED"
X'Extended-Image(red,O .false) - "red"
X'ExtendedlImage(red,1O,false) - "red
Y'Eitendedlmage('a') M 'la'"

Y'Eztendedlmage('B') M "'B'"
YEZxtendedlImage('a',6) - "'a'

Y'Extended-Image('a,,true) - "'la'"

REF.1764N-VI.P(68K/UNIX) 12APR91 3-21

Enumeration type attributes TeleGen2 for 68K/UNIX Hosts

'Extended-Value

X' ExtendedValue (Item)

Returns the image associated with Item as defined in
Text- IO.Enumeration IO. The Text 10 definition states that it reads an
enumeration value from the beginning of the given string and returns the
value of the enumeration literal that corresponds to the sequence input.
(LRM 14.3.9:11)

For a prefix X that is a discrete type or subtype, this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a ConstraintError is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The type of the returned value is the base
type of X. Required.

Examples

type X is (red, green, blue, purple);

Values yielded for selected parameters:

X'Ex:endedValue("red") - red
X'ExtendedValue(" green") - green
X' ExtendedValue(" Purple") - purple
X'ExtendedValue(" GreEn ") - green

3-22 REF.1764N-V.1 i68K/UNIX) 12APR91

LRM Annotations
Enumeration type attributes

'Extended Width

X' Extended Width
Return the width for subtype of X
For a Prefix X that is a discrete type or subtype; this attribute is a function.This attribute yields the Maximum image length over all values of theenumeration type or subtype X

Parameters

There are no Parameters to this function. This function returns the width ofthe largest (width) enumeration literal in the enumeration type specified by
X.

Examples
tyne X is (red, green, blue, purple);type Z is (Xl, X12, X123, X1234);

Values yielded:

-' 'tended Widrh - 6 -'uep/e"
Z' x:enxded 'Width m 5 - X1234-

REF-i764N-V.1J6sK/UN|X)
IZZAPR91

3-3

Floating point attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.3. Floating point attributes

'Extended-Image

X'ExtendedImage(Item,Fore,Aft,Exp,Base,Based)

Returns the image associated with Item as defined in Text IO.Float 10.
The Text 10 definition states that it outputs the value of the parameter Item
as a decimal literal with the format defined by the other parameters. If the
value is negative, a minu.s sign is included in the integer part of the value of
Item. If Exp is 0, the integer part of the output has as many digits as are
needed to represent the integer part of the value of Item or is zero if the
value of Item has no integer part. (LR.M 14.3.8:13, 14.3.3:15)

Item must be a Real value. The resulting string is without underlines or

trailing spaces.

Parameters

Item The itcm for which you want the image: it is passed to the
function. Required.

Fore The minimum number of characters for the integer part of
the decimal representation in the return string. This
includes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified. the default value (2) is
assumed. Optional.

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta
of the type or subtype is greater than 0. 1. then Aft is 1. If
no Aft is specified. the default (X'Digizs- 1) is assumed. If
based notation is specified, the trailing '#' is included in
Aft. Optional.

Exp The minimum number of digits in the exponent. The
exponent consists of a sign and the exponent, possibly with
leading zeros. If no Exp is specified the default (3) is
assumed. If Exp is 0, no exponei * is used. Optional.

Base The base that the image is cc be displayed in. If no base is
specified. the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no oreference is specified.
the defnult (false) is assumed. Optional.

3-24 REF-1,64N-V.168K/UNIX) 12APR91

LRM Annotations Floating point attributes

Examples

type X is digits 5 range -1.0.0 .. 16.0;

Values yielded for selected parameters:

X'ExtendedlImage(5.0) - "5.OOOOE+00"
X'Elztendedlmzage(5.0,1) - 15.OOOOE+0'
X'ExtendedImage(5.,I) - "-5.OOOOE+0O"
X'ExtendedzImage(5.0,2,O) - " 5.OEs-O"
X'ExtendedlImage(5.0,2,o,o) - , " 0
X'ExtendedlImage(5 .0,2,0,0,2) - "101.0"
X'Extendedmage(5.0,2,o,0,2 ,True) - "2;#101.0iA"
X'ExtendedImage(5.,,2,32,Tre) - "2-#1. I#Es02'

REF. r64N-VI .1 fK/UN~IX) 12APR91 3-Z5

Floating point attributes TeleGen2 for 68K/UNIX Hosts

'Extended Value
X'ExendedValue (Item)

Returns the value associated with Item as defined in Text IO.Float IO.
The Text 10 definition states that it skips any leading zeros, then reads a
pius or minus sign if present then reads the string according to the syntax of
a real literal. The return value is that which corresponds to the sequence
input. (LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint-Error is raised.

Parameter

Item A parameter of the predefined type string; it is passed to
the function. The .type of the returned value is the base
type of the input string. Required.

Examples

type X is digits 5 range -10.0 .. 16.0;

Values yielded for selected parameters:

X'Extended Value("5.0") - 5.0
X'Extended Value("0.5E") - 5.0
X'Extended Value("2#1.01#E2") - 5.0

3-26 REF-I "64N-V1.h168K/UNIX) IZAPR91

LRM Annotatiois Floating point attributes

'Extended Digits

X' ExtendedDigits(Base)

Returns the number of digits using base in the mantissa of model numbers
of the subtype X.

Parameter

Base The base that the subtype is defined in. If no base is
specified, the default (10) is assumed. Optional.

Examples

type X is digits 5 range -10.0 .. 16.0;

Values yielded:

X'ExtendedDigits - 5

REF.1764N.Vi.I6SK/UNIX) 12APR9g 3-27

Fixed point attributes TeleGen2 for 68K/UNIX Hosts

3.10.2.3.4. Fixed point attributes

'Extended-Image

X'Ex:endedLage(Item, Fore,Aft, Exp,Base,Based)

Returns the image associated with Item as defined in Text IO.Fixed 10.
The Text 10 definition states that it outputs the value of the parameter Item
as a decimal literal with the format defined by the other parameters. If the
value is negative, a minus sign is included in the integer part of the value cf
Item. If Exp is 0, the integer part of the output has as many digits as are
needed to represent the integer part of the value of Item or is zero if the
value of Item has no integer part. (LRM 14.3.8:13, 14.3.8:15)

For a prefix X that is a discrete type or subtype; this attribute is a function
that may have more than one parameter. The parameter Item must be a
Real value. The resulting string is without underlines or trailing spaces.

Parameters

Icem The item for which you want the image; it is passed to the
function. Required.

fore The minimum number of characters for the integer part of
the decimal representation in the return string. This
includes a minus sign if the value is negative and the base
with the '#' if based notation is specified. If the integer
part to be output has fewer characters than specified by
Fore, leading spaces are output first to make up the
difference. If no Fore is specified. the default value (2) is
assumed. Optional.

Aft The minimum number of decimal digits after the decimal
point to accommodate the precision desired. If the delta
of the type or subtype is greater than 0. 1. then Aft is 1. If
no Aft is specified, the default (X'Digits-1) is assumed. If
.ased notation is specified. the trailing '#' is included in
Aft. Optional.

Exp The minimum number of digits in the exponent: the
exponent cnsiss of a sign and the exponent. possibly with
le ding zeros. If no Exp is specified. the default (3) is
assumed. If Exp is 0, no exponent is used. Optional.

Base The base in which the image is to be displayed. If no base
is specified. the default (10) is assumed. Optional.

3-2.4 REF-i"64N-V I.l(K/UNIXj I2APR91

LRM Annotations Fixed point attributes

Based An indication of whether you want the string returned to
be in based notation or not If no preference is specified,
the default (false) is assumed. Optional.

Examples

type X is delta 0.1 range -10.0 .. 17.0;

Values yielded for selected parameters:

X'ExtendedLnage(5.0) - " 5.OOE+O0"
X'Extended Image(5.0,1) -"5.00E+00"

X'ExtendedImage(-5.0,i) - '-5.Q0E+00"
X'Extended Image(5.0,2,0) -" 5.0E+O0"
X'Extended_!mage(5.0,2,0O0) -" 5.0"
X'E tended Image(5.0,2,0,0,2) - "101.0"
X'Extended Image(5 .0,2,0,0,2,Trvie) - "2#101.0#"
X' Extendedlmage(5 .0,2,2,3,2,True) - "21-1. 0E+02"

,EF.'764N-VI.fi68K/UNIX 12%PR91 3-Z'9

Fixed point attributes TeleGen2 for 68K/UNIX Hosts

'Extended Value
X'Ext endedValue(Image)

Returns the value associated with Item as defined in Text IO.Fixed 10. The
Text 10 definition states that it skips any leading zeros, reads a plus or
minus sign if present, then reads the string according to the syntax of a real
literal The return value is that which corresponds to the sequence input.
(LRM 14.3.8:9, 14.3.8:10)

For a prefix X that is a discrete type or subtype; this attribute is a function
with a single parameter. The actual parameter Item must be of predefined
type string. Any leading or trailing spaces in the string X are ignored. In
the case where an illegal string is passed, a Constraint Error is raised.

Parameter

Image Parameter of the predefined type string. The type of the
returned value is the base type of the input string.
Required.

Examples

t-7pe X is delta 0.1 range -10.0 .. 11.0;

Values yielded for selected parameters:

X'Extended_7alue("5.0") - 5.0
X'ExtendedValue("0.5El") - 5.0
X'E.xtendedValue("2#1.01#E2") - 5.0

3-34) REF-1"64N-VI.-A1iK/LNIX IAPR9g

LRM Annotations Fixed point attributes

'Extended Fore

X'ExtendedFore(Base,Based)

Returns the minimum number of characters required for the integer part of
the based representation of X.

Parameters

Base The base in which the subtype is to be displayed. If no
base is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified.
the default (false) is assumed. Opto,,,

Examples

type X is delta 0.1 range -10.0 .. 17.1;

Values yielded for selected parameters:

X'Extended Fore - 3 -- "-10"
X'ExtendedFore(2) - 6 -- " 10001"

REF.1764N-VI.li6XK/LNIXi 12APR91 }-I

Fixed point attributes TeleGen2 for 68K/UNIX Hosts

'Extended Aft

X'ExtendedAft(Base .Based)

Returns the minimum number of characters required for the tractional part
of the based representation of X.

Parameters

Base The base in which the subtype is to be displayed. If no
base is specified, the default (10) is assumed. Optional.

Based An indication of whether you want the string returned to
be in based notation or not. If no preference is specified,
the default (false) is assumed. Optional.

Examples

t ype X is delta 0.1 range -10.0 .. 17.1;

Values yielded for selected parameters:

X'Extended_A.ft - I - I"from 0.1
X'Ex:endedA.f (2) - 4 -"O001"fmor 2#0.0001#

3-31 REF.1764N-V1.1i6K/UNIX) 12APR91

LRM Annotations Package System

3.10.3. (3) Package System

vith Unchecked Conversion;

package System is

-- CUSTOMIZABLE VALUES

type Name is (TeleGen2);

System Name constant name :- TeleGen2;

MemorySize constant :- (2 ** 31) -1; --Available memory, in storage units
Tick constant :- 2.0 / 100.0; --Basic clock rate, in seconds

type Task Data is --

record -- Adaptation-specific customization information
null; -- for task objects.

end record; --

-- NON-CUSTOMIZABLE, IMPLEMNTATION-DEPENDENT VALUES

Scorage Unit constant : 8;
Min Int constant : -(2 * 31);
Max Int constant : (2 *' 31) - 1;
Max Digits constant : 15;
IMax Mantissa constant : 31;
Fine Delta constant : 1.0 / (2 * Max Mantissa);

subtype Priority is Integer Range 0 63;

-- ADDRESS TYPE SUPPORT

type Memory is private;
type Address is access Memory;

-- Ensures compatibility bet-ween addresses and access types.
-- Also provides implicit NULL ini:ial value.

REF.1764N-V1.i68K/UNX') I2APR91 3-33

Package System TeleGen2 for 68K/UNIX Hosts

Null Address: constant Address :- null;

-- Initial value for any Address object

type Address-Value is range -(2**3l)..(2**3l)-l;

-- A numeric representation of logical addresses for use in address clauses

Hex 80000000 : constant Address Value : - l6#80000000#;
Hex 90000000 constant Address Value :- - 16#70000000#;
Hex AO000000 : constant Address Value :- - 16#60000000#;
Hex-30000000 : constant Address Value :- - 16#50000000#;
Hex COOOOOO : constant Address Value :- - 16#40000000#;
Hex DOOOOOOO : constant Address Value :- - 16#30000000#;
Hex EOOOOOOO : constant Address Value :- - 16#20000000#;
Hex FOOOOOOO constant AddressValue :- - 16#10000000#;

-- Define numeric offsets to aid in Address calculations
-- Example:

-- for Hardware use at Location (HexFOOOOOOO + 16#2345678#);

function Location is new UncheckedConversion (AddressValue, Address);

-- May be used in address clauses:

-- Object: SomeType;
-- for Object use at Location (16#4000#);

function Label (Name: String) return Address;
pragma Interface (META. Label);

-- The LABEL meta-function allows a link name to be specified as address
-- for an imported object in an address clause:

-- Object: SomeType;

-- for Object use at Label("OBJECT$$LINKNAME");

-- System.Label returns Null Address for non-literal parameters.

-- ERROR REPORTING SUPPORT

procedure ReportError;
pragma Interface (Assembly, ReportError)
pragma rnterfaceInformation (Report Error, "REPORTERROR").

3-34 REF-1764N.VI. 68K/UNIX) 12APR91

LRM Annotations Package System

-- Report Error can only be called in an exception handler and provides
- - an exception traceback like tracebacks provided for unhandled
- - exceptions

-- CALL SUPORT

type Subprogram Value IS
record

Proc addr Address;
Parent frame Address;

end record;

-- Value returned by the implementation-defined 'Subprogram Value
-- attribute. The attribute is not defined for subprograms with
-- parameters.

private

end System;

3.10.3.1. System.Label

The System.Label meta-function is provided to allow you to address objects by a
linker-recognzed label name. This function takes a single string literal as a
parameter and returns a vaue of System-Address. The function simply returns
the run-time address of the appropriate resolved link name, the primary purpose
being to address objects created and referenced from other languages.

When used in an address clause, System.Label indicates that the Ada
object or subprogram is to be referenced by a label name. The actual
object must be created in some other unit (normaly by I nother
language), and this capability simply allows you to import that object and
reference it in Ada. Any explicit or default initialization will be applied
to the object. For example, if the object is declared to be of an access

type, it will be initiajized to NULL

0 When used in an expression, System.L ibel provides the link time
address of any name, such as a name for an object or Fsubprogram.

REF-176N-VI .1 68K/U NIX) 12APR91 3.35

TeleGen2 characteristics TeleGen2 for 68K/UNIX Hosts

3.10.3.2. System.ReportError

ReportError must be called from directly within an exception handler. This
routine displays the normal exception traceback information to standard output.
It is essentially the same traceback that could be obtained if the exception were
unhandled and propagated out of the program. ReportError simply allows you
to handle the exception and still display this information. You may also want to
use this capability in a user handler at the end of a task since exceptions in tasks
will not be propagated to the main program. You can also get this capability for all
tasks by using the - X binder switch.

For details on the output. refer to Section 2.9, "Exception handling."

3.10.4. (4) Restrictions on representation clauses

Representation clauses are fully supported with the following exceptions:

* Enumeration representation clauses are supported for all enumeration
types except Boolean types.

* Record representation clauses are supported except for records with

dynamically-sized components.

* Pragma Pack is supported except for dynamically-sized components.

3.10.5. (5) Implementation-generated names

TeieGen2 has no impiementation-generated names.

3.10.6. (6) Address clause expression interpretation

An expression that appears in an object address clause is interpreted as the
address of the first storage unit of the object.

3.10.7. (7) Restrictions on unchecked conversions

Unchecked programming is supported except for unchecked type conversions
where the destination type is an unconstrained record or array type.

3.10.8. (8) Implementation-dependent characteristics of the I/O

Text_10 has the following irnplementation-dependent characteristics:

type Count is range 0.. (2 ** 31)-2i

subtype Field is integer range 0..1000;

3.6 REF-I6-4N-Vi.1h,,K/LNMX 12APR91

LRM Annotations TeIeGen2 characteristics

In procedures Create and Open, the Form parameter is supported as specified by
the POSIX Draft 6, Chapter 8.

The standard run-time sublibrary contains preinstantiared versions of
Tent [O.Integer_10 for types Short Integer, Integer, and LongInteger, and of
Tcxt IO.Float 10 for types Float and Long Float. Use the following packages to
elimiate, multi1ple instantiations of the Text 10 packages:

Short -IntegerjText I
Integer Text 10-
Long Integer Text 10
Float Text 10
LongFloat Text 10

REF.176-4N.V1.1(68K/UNIX) 12APR91 3-37

TeleGen2 for 68K/UNIX Hosts

3-384 REF-1764N-VI.1 4MK/ILNMX 12APR91

